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Electromagnetic Fields Chapter 4: Energy and Potential

4, ENERGY AND POTENTIAL

4.1 ENERGY EXPENDED IN MOVING A POINT CHARGE IN AN ELECTRIC
FIELD

The electric field intensity was defined as the force on a unit test charge at that
point. To move a charge Q a distance dL in an electric field E. The force on Q due

to the electric field Fy is

F; = QE (4.1)

The component of this force in the direction dL which we must overcome is

Fg, =F.a;, =QE.a;
Where, a; is the unit vector in the direction of dL.
The force which must apply is equal and opposite to the force due to the field,
Foppr = —QE .ay
Expenditure of energy is the product of the force and distance. That is, Differential
work done by external source moving charge, Q:
dW = —QE .a,dL
or
dW = —QE .dL (4.2)
If replaced a; dL by the dL.

This differential amount of work required may be zero under several conditions
from (4.2). There are for which E, @, or dL is zero, and a much more important
case in which E and dL are perpendicular. Here the charge is moved always in a
direction at right angles to the electric field.

The work required to move the charge a finite distance in electric field must be

determined by:

final

W = f E.dL (4.3)
init
Where the path must be specified before the integral can be evaluated. The charge

Is assumed to be at rest at both its initial and final positions.
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Example. 4.1:

Given the electric field, E = — (8xyza, + 4x?za, — 4x%ya,)V/m, find the

differential amount of work done in moving a 6 nC charge a distance of 2 um,

starting at P(2, —2, 3) and proceeding in the direction a; (a) (— gax + %ay + %az)
2 3 6

(b) ( Ay —-ay — ;az) (©) (;ax +;ay)

Solution: dW = —QE .a;dL
96 48 32

Eo 23 = (—jax tgayt ?az)
(@) where a, = (—Sax + %ay + %az)

I of 96 48 32 6 3 2
dW =—-6x10""x 2 x 10 (—?ax+?ay+?az)(—7ax+§ay+§az)
AW = —12 x 10-9 x 10-6 (29 X (76)  48x 3 32x2 149.3 J

= — X X = — .
9x%x7 9x%x7 9%x7
6 3 2
(b) where a, = (; ay —-ay, — ;az)

i of 96 48 32 N6 3 2
dW =—-6x107"x 2 x 10 (—?ax+?ay+?az)(§ax—7ay—7az)
aw 12 x107° 10_6( 96x6 48x3 32><2) 149.3J

=—-12 X X — — — = )

9x7 9x7 9x7

3 6
(c) where a, = (;ax +;ay)
i o 96 48 32 \/3 6
dW = -6 x 10 X 2 X 10 (—?ax+?ay+?az)(7ax+7ay)
dWw = 12><10—9><10—6( 26 X3 48X6)
B 9%x7  9x7

4.2 THE LINE INTEGRAL
The integral expression for the work done in moving a point charge Q from one
position to another, equation (4.3), is an example of a line integral.

Without using vector analysis we should have to write:

final

W=-0Q J E, .dL

init
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Where E; is a component of E along dL.
The integral is obtained exactly only when the number of segments becomes
infinite. This procedure is indicated in Fig. 4.1.

e Path of integral (from an initial position B to a final position A).

e The path is divided into six segments, AL, AL,, . . . ., AL.

e The components of E along each segment denoted by E;; , E;5,...., EL¢.
The work involved in moving a charge Q from B to A is:

W = —Q(E1ALy + E;,AL,+ ...+ E gALg)
By using vector notation,
W = —Q(E;AL; + E;AL,+ ...+ E¢ALg)
For a uniform field, E,=E, = =E;=E
W = —QE(AL; + AL,+ ...+ ALg)

Where,

ALl + AL2+ . + AL6 = LBA
Therefore, if uniform field E

Therefore,

A
W:—QJE.dL
B

As applied to a uniform field

A
W:—QE.f dL = —QE .Lg,
B

The expressions for dL in coordinate systems (cartesian, cylindrical, and

spherical):

dL = dxa, + dya, + dza, (cartesian coordinate)
dL = dpa, + pdpay + dza, (cylindrical coordinate)
dL = dra, + rdfag + rsin 6 d¢ay (spherical coordinate)
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Final position
Eg

Initial position
Fig. 4.1. The line integral of E between points B and A
Example 4.2:
We are given the nonuniform field E = ya, + xa, + 2a,.
Determine the work expended in carrying 2 C from B(1,0,1) to A(0.8,0.6,1) along
the shorter arc of the circle, x> + y2 =1,z = 1.
Solution: The differential path is, dL = dxa, + dya, + dza,, where, E is not

constant.

A
W=—Q]E.dL
B

A
W= -2 J(yax + xa, + 2a,). (dxa, + dya, + dza,)
B

0.8 0.6 1
Wz—nydx—fody—éLfdz
1 0 1
Using the equation of the circular path
0.8 0.6
W= —ZJ 1—x2dx—Zj V1—vy2%2dy -0
1 0

W = —[x 1 — x2 +sin'1x] - [y\/l — y? +sin‘1y]

W=—-(0.48+0927 -0—1.571) — (0.48+ 0.644 —0—0) = —-0.967J
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Example 4.3:

Find the work required to carry 2 C from B(1,0,1) to A(0.8,0.6,1) along the
straight-line path from B to A in the field, E = ya, + xa, + 2a,.

Solution:

The differential path dL = dxa, + dya,, + dza,,

We start by determining the equations of the straight line.
_ Ya — VB

Y —JYB xA—xB(x_xB)
Zpy — Zp
Z—2Zg = —
B yA—yB(y YB)
Xa — XB
x xB_ZA—ZB(Z Zp)

From the first and second equation above we have

y=-3x-1)
z=1
A 0.8 0.6 1
W=—QjE.dL=—2j ydx—Z] xdy—4fdz
B 1 0 1

0.8 0.6
W=6J (x—l)dx—Zj (1—§)dy=—0.96J
1 0
Example 4.4:

Determine W in cylindrical coordinates, and the circular path Fig. 4.2a.

The work done is:

A
W=-0 f E.dL
B
PL
E=E =
pAp 2me,p ap
dL = pd(p a¢,
final final
PL PL
W =-— .pd =— d . =0
0 | ra,pdbay==0 | Fedg@y.a =0

initial initial
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Example 4.5:
Determine W if carry a charge from p = a to p = b along a radial path Fig. 4.2b.
PL
E=E,a, = 2me.p a,
dL = dpa,
final final
PL PL
¢ f 21E,p 4 - 4P3p ¢ j 21E,p p(a,-a,)
initial initial
b
d b
W= — J p_dp_ Qp b
2TE, P 2me, a
a
Infinite line y
charge o, /S PL
a %
(ll,.“dpﬂp

dL=p, d¢a,

(a) (b)

Fig. 4.2 (a) A circular path and (b) a radial path along which a charge of Q is
carried in the field of an infinite line charge.
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4.3 DEFINITION OF POTENTIAL DIFFERENCE AND POTENTIAL
Potential difference (V): define as the work done (by an external source) in moving

a unit positive charge from one point to another in an electric field,

final

Potential difference =V = K = — j E.dL
Q initial
Potential difference is measured in joules per coulomb; (volt) is common unit.
Hence the potential difference between points A and B is
A
Vag = V4 — Vg =—jE.dL V)
B
The potential difference between pointsatp =atop =b is

w PLLB

Q - 2TE, na

Vag =

Example 4.6:
Find the potential difference between points A and B at radial distances r,and rg
from a point charge Q.

Solution: Choosing an origin at Q.

Q
E=FE,a, = —4neor2 a,
dL =dr a,
A A Q Ta Q
VABZ_JEsz_ 4n6r2ar.d7‘ar=—f4ne rsz‘
B ° 18: 0
Q 1 1
Vap = )

If the potential at point A is V, and that at B is V5, then
Vap = V4 —Vp

7, and V shall have the same zero reference point.
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Example 4.7: An electric field is expressed in Cartesian coordinates system by
E = 6x*a, + 6ya, + 4a, V/m. Find:

(@) Vyy if points M and N are specified by M(2,6,—1) and N(—3, -3, 2);

(b) Vy, if V= 0at Q(4,—2,—35); (c) Vy if V = 2 at P(1,2, —4).

Solution: (a) Where dL = dxa, + dya, + dza, in Cartesian coordinates
M

N

M M
Vun = — f E.dL = - J (6x%a, + 6ya, + 4a,) .(dxa, + dya, + dza,)
N N

2 6 -1

M
Vun = — f (6x?dx + 6ydy + 4dz) = —[ j 6x%dx + f6ydy +f 4dz]
N

-3 =3 2
6x3]° 6y21°
Vun = _“T] + [T] + [4z]3!
-3 -3

3 23 2 22
VMN=—{[6(2) i) ]+[6(6) _83) ]+[4(—1>—4(2)]}=—139v

3 3 2 2
M M
(b) Vo= —J E.dL=— J (6x%a, + 6ya, + 4a,). (dxa, + dya, + dza,)
Q Q
M 2 6 —1
Vig = — J (6x%dx + 6ydy + 4dz) = —[f 6x%dx + f6ydy + f 4dz)
Q 4 22 35

6x3 6y?
VMg = _“ ;C L‘l‘[ ;] ]_2 + [42]:%5}

3 3 2 92
VMo = —{[6(2) — 6(4) ] + [6(6) — 6(~2) ] +4[(—1) — (—35)]} =—-120V

3 3 2 2

N N
()  Vyp=-— J E.dL=— j (6x*a, + 6ya, + 4a,) .(dxa, + dya, + dza,
P

P
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N _3 -3 2
Vo = = [ (62 + 6yay + 42d2) =~ | 6x?ax+ [ 6yay+ [ 4az)
P 1 2 —4

6x3]°  [6y%]° )
Vyp = —“TL + ITL + [42]—4}

6(-3)3 6(1)3] [6(—3)% 6(2)2
V’V”:_{[ 3 3 ]+[ 2 2

] +[4(2) — 4(—4)]} =17V
VNP:VN_VP = 17=VN_2 = VN=19V

4.4 THE POTENTIAL FIELD OF A POINT CHARGE
The potential difference between two points located at r, and r in the field of a
point charge Q placed at the origin, on the same radial line or had the same & and
¢ coordinate values.
1 1

Vap =%€O(a—g) =V~ Vs
We now should take different & and ¢ coordinate values for the initial and final
position. The points A and B in Fig. 4.3 at radial distances of r, and 7.

Alry, 0, 0) L= Ea,

— dL=dra +rdfag*rsintdga,

‘ s B";;.Ug.¢g}
o

Fig. 4.3
The differential path length dL is:
dL = dra, + rdfag + rsin 6 dpay

The E has only a radial component.

Q
E=FE,a, = —4neor2 a,
Ta A 0
|4 =—JE.dL=— ——a, .(dra, + rdfag + rsin 8 d¢ay)
AB 4-7'[607'2 T T o]

B
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Ta
Q Q 1 1
Vie = — — _
4B j 41€, T2 d 41t€, (rA rB)
;]
0 1 1
Vap = ———)

The potential difference between two points in the field of a point charge
e Depends only on the distance of each point from the charge.
e Does not depend on the particular path used to carry our unit charge from

one point to the other.[1]
If V = 0 at infinity (rz = o) i.e. (rl = 0). The potential at r, becomes:
B
Q

4me, 1y

Va V)

Example 4.8: A 15 nC point charge is at the origin in free space. Calculate Vp if
point P is located at P(—2,3,—1) and: (a) V = 0 at point Q(6,5,4); (b) V =0 at
infinity; (c) V = 5V at point M(2, 0, 4).

Solution: (a) rp =Top =+/(=2)2+ (3)2 + (-1)2 =14

To =Tog =+ (6)2+ (5)2 + (4)2 =77

Vo Q (1 1)_ 15 x107° (1 1 )—207V
PO Ame, \1p To _4n%><10‘9 Vid 77/ 7
(s

(b) (rQ = 00); (1/rQ = 0); and 1p =19p = \/(—2)2 +(3)%+(-1)2 =414

_Q (1y  15x107° 1y
P = e, (E> RN (m) =36V
361
(c) Tp =Top = \/(_2)2 +(3)2+ (-1)2 =14

g =Tom = (2)% + (4)2 =20

S Q (1 1)_ 15 x 107° (1 1 )—589V
PQ dme, \rp 19 4n32 % 10-9 1z 0]
VA
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4.5 POTENTIAL FIELD OF A SYSTEM OF CHARGES: (conservative property)
The potential field of a single point charge Q, located at r;, involves the distance

|r — 1y | from Q; to the point at r. The potential for a zero reference at infinity,

Q1

v = 41e,|r — 11|

The potential due to two charges @ at r; and Q, at ry, is a function only of

Ir —ry| and |r —r,|, the distances from Q; and Q, to the field point,
respectively.

Q1 Q>

4me,|r — 1y * 41e, |r — 1y

V(r) =

The potential due to n point charges is:

Q1 Q2 Qn

V(r) = + + -+
(r) 4me,|lr —r1| A4me,|r — 1y Ame, T — Iy |

or

C Q
) 4me, |r — 1|
m=1

For continuous charge distributions, we replace Q,,, in equation above with charge

element p; dL or psdS, or p,dv and the summation becomes an integration, so the
potential at r becomes

1 [ pu(r)dl’ : .
V(r) = j - for line charge density
4me, r —r’|
L
1 r)ds’
V(r) = yr J pff —)1"| for surface charge density
S
1 r’) dv’
V(r) = yr j pr —)I"| for volume charge density

vol
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Example 4.9: Find potential VV on the z axis for a uniform line charge p, in the
form of aring p = a inthe z = 0 plane.

Solution: as shown in Fig. 4.4. have

dL' = pd¢ = ad¢’; r = za,; r' = aa,; Ir —r'| = Va? + z?; and

21
V= 1 pLdL’ _ 1 pradg’ _ pLa
dme, o Ir—r'|  4me, § Va*+z*  2e,Va? + 27

Fig. 4.4.

For a zero reference at infinity, then:

e The potential due to a single point charge is the work done in carrying a unit
positive charge from infinity to the point at which we desire the potential,
and the work is independent of the path chosen between those two points.

e The potential field in the presence of a number of point charges is the sum of
the individual potential fields arising from each charge.

e The potential due to a number of point charges or any continuous charge
distribution may therefore be found by carrying a unit charge from infinity
to the point in question along any path we choose.

Note: that no work is done in carrying the unit charge around any closed path in

%E.dL=0

64
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Electromagnetic Fields Chapter 4: Energy and Potential

Example 4.10:
Two point charges —4 pC and 5 puC are located at (2,—1,3) and (0,4,—2),
respectively. Find the potential at (1,0,1) assuming zero potential at infinity.

Solution:

r =a, +a,; r; = 2a, —a, + 3a,; r, = 4a, — 2a,
r-r =-a.+a,— 2a,; Ir—ry| =6
r—r, =a,—4a,+3a, Ir —r,| =26

V(1,0,1) L [z4x107° L2 107 5.872 kV
) ) = _9 — .
an 1306n G V26

Example 4.11: Consider the force field, F = sinmp a,. Around a circular path of
radius p = p,, find §F. dL

Solution: we have dL = pd¢pay, and
21
ng. dL = J sintp ag . pdoay, = 2mp sinmp,

The integral is zero if p; = 1,2, 3, ..., etc., but it is not zero for other values of p,,

or for most other closed paths, and the given field is not conservative.

Example 4.12:

A total charge of % nC is uniformly distributed in the form of a circular disk of

radius 2 m. Find the potential due to this charge at a point on the z-axis, 2 m from
the disk. Compare this potential with that which results if all of the charge is at the

center of the disk.

Solution: R =.4+p? (m)

Q % 107 1078

Ps =4~ ag 3T

C/m?
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(0. 0. 2)

Fig. 4.5

1078 2rn 2

1 j psdS 3 jfpdpdcb
" 47e r—r'| , 1079 / 2
OS | | 47.[%0 o 4+p

30 ¢ [ odod
=—ijp¢=49.7v
T

0 O

V4 + p?

If the total charge at the center of the disk, the expression for the potential of a

|4

point charge applies:

Q Q 2 1077 v
4re,|lr — 11| 4me,Z 310‘9 60
1
0 °"An X (3g7) X 2

4.6 POTENTIAL GRADIENT:
Fig. 4.6 shows two points M at (x,y,z) and N at (x + dx,y + dy, z + dz).

M(x.y,z)
z4 N(x +dx,y + dy, z + dz)

o r+ dr

o

Fig. 4.6
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The vector separation of the two points is:
dr = dxa, + dya, + dza, = dL
The change in VV from M to N is given by

v oV oV
dV = —dx + —dy + —dz

- ox dy 0z
The Del operator, operating on V gives:
vV =a—Vax +a—Va +a—Va =grad V
0x dy Y o0z ?

It follows that

dV =VV.dr
The vector field VIV (also written grad V) is called the gradient of the scalar
function V.
Thus VV lies in the direction of maximum increase of the function V.
If the points M and N to lie on the same equipotential surface, V(x,y,z) = cq,
Fig. 4.7. Then dV = 0, which implies that VV is perpendicular to dr. But dr is
tangent to the equipotential surface; Therefore, VI/ must be along the surface
normal at M. Since VV in the direction of increasing V, it points from V(x,y,z) =
¢, toV(x,y,z) = c,, where ¢, > c;.
The gradient of a potential function is a vector field that is everywhere normal to

the equipotential surfaces.

’ vV

Vix.y.2)=¢,

’;.

/

Fig. 4.7.

67



Electromagnetic Fields Chapter 4: Energy and Potential

The gradient V in all coordinate systems:

av av av _ _
VV = aax + @ay + a—ZaZ cartesian coordinate

av 10V av

vV =%ap+;%a¢ +a_Z

a, cylindrical coordinate

oy Vv 1 v
~or T a9 rsin96¢a¢

spherical coordinate

4.7 RELATIONSHIP BETWEEN E AND V'
From the integral expression for the potential of A with respect to B, the

differential of V may be written

dV = —E.dL
On the other hand,
dV =VV.dr
Since dL = dr is small displacement, it follows that
E=-VV

The electric field intensity E may be obtained when the potential function V is
known. The gradient was found to be a vector normal to the equipotential surfaces,
directed to a positive change in V. With the negative sign here, the E field is found

to be directed from higher to lower levels of potential V.[3]

Example 4.13:
In spherical coordinates and relative to infinity, the potential in the region r > 0
. . . . Q .
surrounding a point charge Q isV = mer Find E.
Solution: E=-VV
— av +16V N 1 av
B (ar Ar T30 T rsing ¢ )
av d Q Q
e (e )
ar) or \ame,r) " 4rre,T? ar
E=-VV = ¢ 5 Ay
4dmte, T
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Example 4.14:
Given the potential V = 1—2 sin 6 cos ¢,
(a) Find the electric flux density D at (2,1/2, 0).
(b) Calculate the work done in moving a 10 uC charge from point A(1,30°, 120°)
to B(4,90°, 60°).
Solution:
(a) D =¢,E, but

b oy OV v 1 v
- =—Grart oo 35 29)

rsin @

av 20
P —r—ssm@ cos ¢
av 10

%=r—zcosecos¢

av 10 _
% = —ﬁsmesmd)

20 110 1 10 _
E=—[—r—ssmecosd)ar+;ﬁc059cos¢a9—rsiner—zsmesmq’)ad)]

20 1
E= [r—3$in9cosq§ar —r—3cost9 cos¢p ag + r—35inq§a¢]
Dat(2,m/2,0)
20 C 5
D=¢,E=¢, [gar — Oagy + Oa¢] = 2.560arﬁ = 22.1a, pC/m

(b) The work done can be found in two ways, using either E or V.

Method 1:
B
W = —Qf E.dL
A

Where, dL = dra, + rdfag + rsin 6 dpay
A(1,30°,120%);—— A’(4,30°,120%);
dL=dra,

A'(4,30°,120°);——— B’(4,90°,120%);
dL=rdfag

B'(4,90°,1209); _ B(4,90°, 609
dL=rsinf0ddpay
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20 10 10
E.dL = r—351n9cos¢.dr —r—gcosecosq’).rde +r—3$1n¢.d¢
4 90
20 10
W =-0Q r—351n9cosq’).dr — r—zcosecosgbd@
1 6=30 30 r=4
$=120 $=120
60
10
+ J Fsmgb do
120 r=4J
6=90
W = 28.125uJ
Method 2: Since V is known.
B
W= —Qj E.dL
A

W =QVug=Q(Vg—Vy)
10 10
W =10.10"° (E c0s 90° cos 60° — 12 €08 30° cos 1200)

_ 6 (10 (=9)) _
W =10.107% (55— ~) = 28125 w

Example 4.15:
Given the potential field, V = 2x2y — 5z, and a point P(—4,3,6), find several
numerical values at point P: the potential V, the electric field intensity E, the
direction of E, the electric flux density D, and the volume charge density p,,.
Solution: The potential at P(—4, 3, 6), Is

Vipy = 2(—4)>x3-5x6= 66V
we may use the gradient operation to obtain the electric field intensity,

ov ov ov

E=-VV=—a,+—a, +—a

ox ¥ oay Y 0z ?
W g W2 W
ax—4xy, ay—Zx, Pl 5

E = —4xya, — 2x*a, + 5a, V/m
The value of E at point P is
Epy = —4(—4)3a, — 2(—4)*a, + 5a, V/m = 48a, — 32a, + 5a, V/m
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|Ep| = /482 + (=32)2 +52 =57.9V/m
The direction of E at P is given by the unit vector
48a, — 32a,, + 5a,
dep = 57.9
If we assume these fields exist in free space, then

= 0.829a, — 0.553a,, + 0.086a,

D = ¢,E = —35.4xya, — 17.71x%a, + 44.3a, pC/m>

Finally, we may use the divergence relationship to find the volume charge density
that is the source of the given potential field,

p, = V.D = —35.4y pC/m3
At point P, p, = 106.2 pC/m3
Example 4.16:
Given that E = (3x* +y)a, + xa, kV/m, find the work done in moving a
—2 uC charge from (0,5, 0) to (2,—1, 0) by taking the path.
(@) (0,5,0) - (2,5,0) » (2,—1,0); (b)y =5—3x; (©)y =5 —3x;
Solution: (a) (0,5,0) - (2,5,0) - (2,—1,0)

A(O,S,O);m A'(2,5,0)

A'(2, 5'0);(1[.Td))/ B(2,—-1,0)

B
W= —Qj E.dL
A
2 -1
wW=-Q j(3x2 + y)dx +f xdy =—(-2)(18 —12) =12 uJ
0 y=5 5 x=2
(b) y=5-3x = dy = —3dx

B 2
W= —QJ E.dL = —Qf[(3x2 + 5 — 3x)dx + x(—3)dx]
A 0
2

W =-0 j(3x2 —6x+5)dx =—(-2)[8—12+10] =12 nJ
0
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(c) y=5—3x and x=—§+§
B 2 -1 :
W=—QfE.dL=—(—2) f(3x2—3x+5)dx+j (—%}+§)dy =12 pJ
A 0 5

4.8 AN ELECTRIC DIPOLE AND FLUX LINES:
An electric dipole is formed when two point charges of equal magnitude but
opposite sign are separated by a small distance.

Consider the dipole shown in Fig. 4.8. The potential at point P(r, 8, ¢) is given by:

Q (1 1 Q (Tp—T4
= () -
TE, \Iy Tg 4te, \ T4 TR

e 1, the distances between P and +Q

e 15 the distances between P and - Q
If r>>d;, rg—ry=dcosf; and 1,75 =12 then

Q (d cos 9)

Ate, \ 12

|4

Since, d cos 8 = d.a,, where d = da,, if we define
P=0Qd
The dipole moment, may be written as

P.a
V T

= 2
4mte,r

d cos &

Fig. 4.8
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Note that the dipole moment P is directed from —Q to +Q. If the dipole center is
not at the origin but at r’, then

P.(r—r)
4me,lr — 1’13

V(r) =

The electric field due to the dipole with center at the origin, shown in Fig. 4.8, can

be obtained from equations above.[2]

E—_vy— av +16V _Qdcos@ Qd sin 6
B ~ T lar Ty a0 T 2me, T3 ar 4e, T3 a9
E= dme.r? (2cosfa, +sinfay)
Where, P = |P| =
Notice that

e A point charge is a monopole and its electric field varies inversely as r2
while its potential field varies inversely as r.
e The electric field due to a dipole varies inversely as r3 while its potential
varies inversely as r2.
An electric flux line is an imaginary path or line drawn in such a way that its
direction at any point is the direction of the electric field at that point.
Equipotential surface: defined as any surface on which the potential is the same.
Equipotential line: is the intersection of an equipotential surface and a plane results

in a path or line.

flux line

"\_,Eqmpotent:a[

\ifm

¥ Equipotential
surface

(b)

Fig. 4.21 Equipotential surfaces for (a) a point charge and (b) an electric dipole.
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Example 4.17:

Two dipoles with dipole moments —5a, nC/m and 9a, nC/m are located at points

(0,0,—2) and (0,0,3), respectively. Find the potential at the origin.

Solution:
2
P..T 1 [Pq.r P,.1
V= Z ke 1-I1 n 2 2]
Lydne, ()’ Ame, L(r)? T ()P
Where,
Pl == _Saz, = (0, 0,0) - (0, 0, _2) = Zaz, rL = |l‘1| =2
P; = 9a,; r, =(0,0,0)—(0,0,3) = —3ay,; r,=Ir, =3
Hence,
1 —5a,).(2a 9a,).(—3a
V= _9[( 2)-( z)+( 2)-( z)]xlo_g
0 @y 3
36m
B 9% 107° [(—10) 27] 2025V
~107° 8 271 '
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Problems
4.1.[1] Calculate the work done in moving a 4 C charge from B(1, 0, 0) to A(0,2,0)
along the path y =2 —2x, z=0 in the field E if (a) E = 5a, V/m; (b) E =
5xa, V/m; (c) E = 5xa, + 5ya, V/m. [Ans:20J : 10J : —30J]
4.2.[1] Let E=ya, V/m at a certain instant of time, and calculate the work
required to move a 3 C charge from (1,3,5) to (2,0,3) along the straight line
segments joining: (@) (1,3,5) to (2,3,5) to (2,0,5) to (2,0,3); (b) (1,3,5) to
(1,3,3) to (1,0,3) to (2,0, 3). [Ans: —9J : 0]
4.3.]2] An electric dipole of 100 a, pC. m is located at the origin. Find ¥V and E at
points (a) (0,0,10) (b) (1,7/3,m/2)
[Ans:(a) 9mV: 1.8a, mV/m (b)0.45V: 09a,+ 0.7794 a5 V/m]
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